Загрузка данных...

Нейросети: просто о сложном

24 июля 2017 г. 14:37:19

Просмотров: 477

Нейросети: просто о сложном

Нейросети — это такие искусственные мозги, которые могут без труда обставить лучших игроков в го или шахматы, рисовать как известные художники, водить авто, быть кассирами в магазинах, писать песни. Пройдет лет 20-30, и часть работы, которая сейчас по силам только квалифицированным специалистам, «переложат на плечи» нейронным сетям. Кто знает, может на старости лет мы с вами окажемся полностью в виртуальном мире, а тут — в реальном — будут хозяйничать машины. Почти как в «Матрице», хе-хе. Бояться пока нечего, но знать, что это такое стоит — за искусственным интеллектом будущее.

Что такое нейронные сети?

Искусственная нейронная сеть —  это математическая модель , в основе которой те же принципы, что и в биологических нейронных сетях. Они даже были придуманы в процессе изучения деятельности мозга.

Состоит искусственная нейронная сеть (ИНС) из маленьких процессоров-нейронов. Каждый из них работает только с крупицей общей поступающей информации и выполняет простейшую роль. Но если объединить эти ячейки, они смогут справиться с задачами, которые не под силу привычным методам программирования.

Главной способностью ИНС является их возможность к обучению. С каждым использованием, с каждым прогоном нейронная сеть допускает все меньше ошибок и выдает результат все более близкий к идеальному. Вот небольшой пример: ИНС просят установить, что нарисовано на картинке. Обработав 100 примеров сеть понимает, что это собака, обработав 1 000 — сможет определить породу, обработав 1 000 000 — возраст.

Кто и как их создал?

Спасибо за создание столь удобного инструмента стоит сказать ученым У. Питту (W. Pitts) и У. Маккалоку (W. McCulloch). Они сформировали само понятие нейронной сети. Произошло это еще  в 1943 году , а Н. Винер (N. Wiener) предложил реализовать концепцию при помощи вакуумных ламп. Он же в своей работе о кибернетике представил биологические процессы организма в виде математических моделей.

Спустя 6 лет, в 1949-м, Д. Веббом (D. Hebb) был предложен первый алгоритм обучения, а последующие годы отметились созданием сразу нескольких принципиальных вариантов ИНС:

  • 1958 год — создание перцептона Ф. Розенблаттом (F. Rosenblatt). Используется для прогнозирования погоды, распознавания образов и подобных задач;
  • 1960 — разработка адалина Уидроу(B. Widrow B) и Хоффом (M. Hoff). Нашел применение в системах адаптивного управления и в задачах предсказания. До сих пор является стандартным элементом ряда систем обработки сигналов;
  • 1972 — создание нейронных сетей нового типа, способных работать в качестве памяти;
  • 1975 — появление когнитрона, самоорганизующейся сети для распознавания образов;
  • 2007 — создание Джеффри Хинтоном (Geoffrey Hinton) алгоритмов глубокого обучения.

История ИНС циклична, в ней встречаются как долгие периоды спада интереса, так и молниеносные взлеты. Сейчас мы имеем дело как раз с пиком интереса. За такой ажиотаж следует сказать спасибо разработке новых алгоритмов обучения. Они позволили нейросетям выйти на современный уровень.

Нейронные сети умеют обучатся?

Это и есть их главная фишка. Если алгоритмы попроще всегда реагируют на один и тот же поток данных одинаково, то нейросети ведут себя иначе. Каждый раз, обрабатывая данные, свободные элементы нейронных сетей меняются, запоминая предыдущий опыт. С его помощью точность работы повышается и уменьшается вероятность ошибки. Чем  больше данных  мы пропустим через нейросеть, тем эффективнее окажется ее работа.

Где используются нейросети?

Если на секунду задуматься и присмотреться, окажется, что на самом деле они  уже  применяются повсеместно.

Самый простой пример — технология распознавания голоса Google. Она была переработана с учетом ИНС еще три года назад, попутно повысив качество работы сервиса в разы. Системы распознавания лиц? Снова нейросети. Прогнозирование погоды и курса акций? Опять они же. И это не считая множества более скромных областей использования сервисов и приложений.

Например, тексты песен для альбома вымышленной группы Нейроная оборона написала нейросеть. Если вы не фанат Егора Летова, отличить оригинал от подражателей будет ох как сложно!

 

Или вот инженер компании Nvidia использовал нейросеть для обучения камер наблюдения. Теперь, когда в камеру возле его дома попадает кот, автоматически включается система полива газона — кот тут же ретируется, а территория дома остается непомеченной. Любопытно, что сеть обучалась распознавать котов с помощью картинок в Google по запросу «кот».

На уже почти готовой «Зенит-арена» тоже планируют использовать нейросеть для распознавания лиц. Если в камеру попадет фанат, известный особо буйным нравом, система сообщит об этом в службу безопасности стадиона.

И халявная Prisma тоже использует нейросети?

Да,  нашумевшая Prisma  не просто накладывает на фотку фильтр, в самом деле  рисует  поверх вашего фото, подражая реальным художникам. Всю работу здесь здесь тоже выполняют искусственные нейронные сети. И именно поэтому программе нужно подключение к интернету.

К слову, еще в прошлом году получил популярность похожий онлайн-сервис  http://deepdreamgenerator.com/ . После того, как пользователь отправляет в него картинку, программа выдает изображение таким, каким его видит нейросеть, занимающаяся распознаванием объектов. Многих тогда веселили изображения, больше напоминающие визуальные галлюцинации. Но это отличный пример процесса самообучения. В самом начале на обработанных картинках тут и там были видны мордочки собак, которые со временем исчезли, уступив место более привычным предметам обихода. Многие тогда удивлялись — откуда они берутся, если ими там даже и не пахло? Ответ прост: для начального обучения нейросети использовались как раз фотографии собак. Вот ИНС и видела их повсюду до того, как выучила новые предметы.

Нейросети обыгрывают людей?

Не так давно разработчики нейросетей Google DeepMind активно делились очередным достижением — созданием программы AlphaGo, которая смогла  обыграть в го  одного из сильнейших чемпионов мира, корейца Ли Сидоля.

 

 

По части программирования искусственного противника эта игра в несколько раз сложнее шахмат, ведь там число возможных положений во много раз выше. Разработчики долгое время не могли создать программу, способную оказать достойное сопротивление профессионалам, но с привлечением нейросетей дело пошло в гору. Утверждать о тотальном преимуществе роботов над людьми при игре в го пока рано — нас явно ждет еще немало схваток человека и машины, — но прогресс, как говорится, на лицо. Авторы AlphaGo тем временем уже поделились планами на следующее творение: боты для онлайн-стрелялок.

Может ли нейросеть подобрать мой пароль?

Может, причем,  вполне успешно.  Но вопрос стоит ставить иначе: стоит ли оно того? Как бы ни был умен искусственный разум, предложить что-то лучшее, чем банальный перебор вариантов, он просто не в состоянии. Результат получится не лучше, чем у самого примитивного алгоритма или простого ручного перебора. С другой стороны, можно дать нейронной сети проанализировать все последние действия пользователя, памятные даты и дни рождения семьи и близких, наиболее частые места чекинов, любимые фильмы, книги, игры и так далее. Дело за малым — найти очень много желающих раскрыть свой настоящий пароль, на которых нейросеть могла бы обучиться.

Нейросети следят за мной?

Одна из областей использования нейросетей — распознавание лиц. В перспективе такая система сможет в реальном времени обрабатывать изображение с камер наблюдения и опознавать людей на них.

 

Казалось бы, самое время начинать бить тревогу — полноценный Большой брат не за горами, но давайте взглянем на ситуацию с иной точки зрения. Во-первых, мы и сами добровольно «сливаем» немало личной информации в Сеть — вспомнить хотя бы обвинения в адрес голосового ассистента Google и Windows 10. О том, плохо это или хорошо, можно спорить до хрипоты, но закончилось все вполне ожидаемым спадом интереса к теме, после чего она закономерно канула в Лету. А нейросети этих корпораций тем временем продолжают собирать наши данные, пусть и анонимно.

С другой стороны, если нейросеть распознает реального террориста на входе в аэропорт, это может спасти кучу жизней, и в этом случае, может, фиг с ней с приватностью?

Нейросеть - будущий Скайнет?

Главное достоинство ИНС — это их возможность к самообучению. Это дает им невероятный потенциал в деле разработки искусственного интеллекта. Посудите сами: запрограммировать все возможные ситуации в память робота невозможно даже в теории. Но если искусственный разум сможет сам получать опыт, он со временем разовьется до той степени, когда окажется способен справиться даже с той ситуацией, к которой его не готовили.

Добавьте ему оболочку из металла, сервоприводы и перед нами окажется полноценный робот. Ждет ли нас восстание? Илон Маск и Стивен Хокинг, например, уже сейчас бьют тревогу. Но хочется думать, что разработчики предпримут все необходимые меры для защиты от подобного. Да и три закона робототехники Азимова станут немалым подспорьем.

Что ждет нас в будущем?

Оставим вопрос про восстание Скайнет и уничтожение человечества роботами. Давайте поговорим о вещах более реальных. Областей применения искусственных нейронных сетей очень много, а потенциал почти бесконечен. Аутентификация, прогнозирование, распознавание всего и вся — лишь самые очевидные варианты. Скорее всего, уже через несколько лет нас ждут развитые системы искусственного интеллекта, со временем все меньше отличающиеся от живых людей. Впрочем, не исключено, что интерес к этой теме снова спадет, а ИТ переключится на какие-нибудь квантовые компьютеры.

Подробнее:  https://fullhub.ru/other/matrix-has-you-93798.html


Подробнее:  https://fullhub.ru/other/matrix-has-you-93798.html




Понравилась статья? Поделись!

!!

Добавить комментарий к статье


Политинформация

Потрясение американское

23 ноября 2017 г. 11:41:13 Просмотров: 21

На геополитической шахматной доске происходят стремительные и кардинальные перемены

22 ноября 2017 г. 10:40:59 Просмотров: 146

У гимназиста, каявшегося в Бундестаге, оказалась бандеровская преподавательница истории

21 ноября 2017 г. 13:36:17 Просмотров: 293

Как Европа воровала российское золото

10 ноября 2017 г. 12:30:12 Просмотров: 597

Вас нагло обманули: На Украине обнародованы данные о доходах Порошенко в России

10 ноября 2017 г. 12:16:41 Просмотров: 122

МИД Германии: Либеральный миропорядок под угрозой, нарастает глобальный хаос

10 ноября 2017 г. 12:14:36 Просмотров: 93

Кремль: На западе разразился

8 ноября 2017 г. 11:47:23 Просмотров: 89

Отчего мог умереть Черчилль

7 ноября 2017 г. 10:31:03 Просмотров: 114

Тайна "женщины в красном" из "Матрицы"

2 ноября 2017 г. 11:11:36 Просмотров: 178

Назарбаев: «Ротшильд» консультирует Нацбанк Казахстана

2 ноября 2017 г. 10:41:32 Просмотров: 105

НОВОСТИ ПАРТНЕРОВ

Loading...
Яндекс.Метрика
feedback
Спасибо! Ваша заявка принята.